设计模式_03结构型

适配器

意图:将一个类的接口转换成客户希望的另外一个接口。适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。
主要解决:主要解决在软件系统中,常常要将一些”现存的对象”放到新的环境中,而新环境要求的接口是现对象不能满足的
举例:
有一个 MediaPlayer 接口和一个实现了 MediaPlayer 接口的实体类 AudioPlayer。默认情况下,AudioPlayer 可以播放 mp3 格式的音频文件。
还有另一个接口 AdvancedMediaPlayer 和实现了 AdvancedMediaPlayer 接口的实体类。该类可以播放 vlc 和 mp4 格式的文件。
想让 AudioPlayer 播放其他格式的音频文件。为了实现这个功能,我们需要创建一个实现了 MediaPlayer 接口的适配器类 MediaAdapter,并使用 AdvancedMediaPlayer 对象来播放所需的格式。
AudioPlayer 使用适配器类 MediaAdapter 传递所需的音频类型,不需要知道能播放所需格式音频的实际类。AdapterPatternDemo,我们的演示类使用 AudioPlayer 类来播放各种格式。

折线框的是原有对象,弯曲线框中的是新增对象or关系。
可见:
1,audioplayer主要修改:内部增加持有对象,mediaAdapter,部分方法调用mediaAdapter实现逻辑
2,mediaAduapter修改,实现接口meidaplayer,其中具体实现方法通过调用adavanceMediaPlayer的方法实现

参考代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
public class AudioPlayer implements MediaPlayer {
MediaAdapter mediaAdapter;
@Override
public void play(String audioType, String fileName) {

//播放 mp3 音乐文件的内置支持
if(audioType.equalsIgnoreCase("mp3")){
System.out.println("Playing mp3 file. Name: "+ fileName);
}
//mediaAdapter 提供了播放其他文件格式的支持
else if(audioType.equalsIgnoreCase("vlc")
|| audioType.equalsIgnoreCase("mp4")){
mediaAdapter = new MediaAdapter(audioType);
mediaAdapter.play(audioType, fileName);
}
else{
System.out.println("Invalid media. "+
audioType + " format not supported");
}
}
}

public class MediaAdapter implements MediaPlayer {

AdvancedMediaPlayer advancedMusicPlayer;

public MediaAdapter(String audioType){
if(audioType.equalsIgnoreCase("vlc") ){
advancedMusicPlayer = new VlcPlayer();
} else if (audioType.equalsIgnoreCase("mp4")){
advancedMusicPlayer = new Mp4Player();
}
}

@Override
public void play(String audioType, String fileName) {
if(audioType.equalsIgnoreCase("vlc")){
advancedMusicPlayer.playVlc(fileName);
}else if(audioType.equalsIgnoreCase("mp4")){
advancedMusicPlayer.playMp4(fileName);
}
}
}

代理

意图:为其他对象提供一种代理以控制对这个对象的访问。
主要解决:在直接访问对象时带来的问题,比如说:要访问的对象在远程的机器上。在面向对象系统中,有些对象由于某些原因(比如对象创建开销很大,或者某些操作需要安全控制,或者需要进程外的访问),直接访问会给使用者或者系统结构带来很多麻烦,我们可以在访问此对象时加上一个对此对象的访问层。
实现
我们将创建一个 Image 接口和实现了 Image 接口的实体类。ProxyImage 是一个代理类,减少 RealImage 对象加载的内存占用。
ProxyPatternDemo,我们的演示类使用 ProxyImage 来获取要加载的 Image 对象,并按照需求进行显示。

方框为原有,圆边框为新增对象or关系。
可见,代理本身是通过持有原始对象,然后调用原始对象方法实现相关功能的,也就是说其实代理模式本身并没有改变任何逻辑流程,也没做太多流程等的抽象化,仅仅是转发了操作。实际使用中代理是解决权限or资源类问题,这一点也可以和适配器进行区分,适配器中的那个新增对象就可以看做代理(当然,他还实现了额外接口)。

代码样例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class ProxyImage implements Image{

private RealImage realImage;
private String fileName;

public ProxyImage(String fileName){
this.fileName = fileName;
}

@Override
public void display() {
if(realImage == null){
realImage = new RealImage(fileName);
}
realImage.display();
}
}

桥接

桥接(Bridge)是用于把抽象化与实现化解耦,使得二者可以独立变化。这种类型的设计模式属于结构型模式,它通过提供抽象化和实现化之间的桥接结构,来实现二者的解耦。
这种模式涉及到一个作为桥接的接口,使得实体类的功能独立于接口实现类。这两种类型的类可被结构化改变而互不影响。
意图:将抽象部分与实现部分分离,使它们都可以独立的变化。
主要解决:在有多种可能会变化的情况下,用继承会造成类爆炸问题,扩展起来不灵活。

举例:有一个作为桥接实现的 DrawAPI 接口和实现了 DrawAPI 接口的实体类 RedCircle、GreenCircle。Shape 是一个抽象类,将使用 DrawAPI 的对象。BridgePatternDemo,我们的演示类使用 Shape 类来画出不同颜色的圆。

原有方框,新增圆框

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class Circle extends Shape {
private int x, y, radius;

public Circle(int x, int y, int radius, DrawAPI drawAPI) {
super(drawAPI);
this.x = x;
this.y = y;
this.radius = radius;
}

public void draw() {
drawAPI.drawCircle(radius,x,y);
}
}

public class BridgePatternDemo {
public static void main(String[] args) {
Shape redCircle = new Circle(100,100, 10, new RedCircle());
Shape greenCircle = new Circle(100,100, 10, new GreenCircle());

redCircle.draw();
greenCircle.draw();
}
}

装饰器

装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构。这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装。
这种模式创建了一个装饰类,用来包装原有的类,并在保持类方法签名完整性的前提下,提供了额外的功能。
意图:动态地给一个对象添加一些额外的职责。就增加功能来说,装饰器模式相比生成子类更为灵活。
主要解决:一般的,我们为了扩展一个类经常使用继承方式实现,由于继承为类引入静态特征,并且随着扩展功能的增多,子类会很膨胀。
python有装饰器,可以较好理解这种模式的用法。 比如统计函数的执行时间等。

将创建一个 Shape 接口和实现了 Shape 接口的实体类。然后我们创建一个实现了 Shape 接口的抽象装饰类 ShapeDecorator,并把 Shape 对象作为它的实例变量。
RedShapeDecorator 是实现了 ShapeDecorator 的实体类。
DecoratorPatternDemo,我们的演示类使用 RedShapeDecorator 来装饰 Shape 对象。

代码参考:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public abstract class ShapeDecorator implements Shape {
protected Shape decoratedShape;

public ShapeDecorator(Shape decoratedShape){
this.decoratedShape = decoratedShape;
}

public void draw(){
decoratedShape.draw();
}
}

public class RedShapeDecorator extends ShapeDecorator {

public RedShapeDecorator(Shape decoratedShape) {
super(decoratedShape);
}

@Override
public void draw() {
decoratedShape.draw();
setRedBorder(decoratedShape);
}

private void setRedBorder(Shape decoratedShape){
System.out.println("Border Color: Red");
}
}

Shape circle = new Circle();
Shape redCircle = new RedShapeDecorator(new Circle());

装饰器和之前代理模式非常像,二者都是持有一个原始对象,并且都实现了对象的接口,从代码角度基本上很难区分。
说下个人理解吧。
是否硬需求:首先代理模式是硬功能驱动性质的,比如权限控制或者资源优化。装饰器就不是,只是可用可不用,典型统计代码执行时间等。
是否专一性:代理是为特定用途定制的,只能用在特定场景。装饰器侧重通用性质,可以装饰其他对象。
能力变化:代理侧重一种控制,或限制,或优化(隐含的效率优化非功能优化),或功能减少(感觉上)。装饰是功能增加和扩展,之前的功能原样保留,额外增加了新的,功能扩充。
装饰器相对更弱耦合些。

外观

外观模式(Facade Pattern)隐藏系统的复杂性,并向客户端提供了一个客户端可以访问系统的接口。这种类型的设计模式属于结构型模式,它向现有的系统添加一个接口,来隐藏系统的复杂性。
这种模式涉及到一个单一的类,该类提供了客户端请求的简化方法和对现有系统类方法的委托调用。

举例:
创建一个 Shape 接口和实现了 Shape 接口的实体类。下一步是定义一个外观类 ShapeMaker。
ShapeMaker 类使用实体类来代表用户对这些类的调用。FacadePatternDemo,我们的演示类使用 ShapeMaker 类来显示结果。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class ShapeMaker {
private Shape circle;
private Shape rectangle;
private Shape square;

public ShapeMaker() {
circle = new Circle();
rectangle = new Rectangle();
square = new Square();
}

public void drawCircle(){
circle.draw();
}
public void drawRectangle(){
rectangle.draw();
}
public void drawSquare(){
square.draw();
}
}

ShapeMaker shapeMaker = new ShapeMaker();
shapeMaker.drawCircle();
shapeMaker.drawRectangle();
shapeMaker.drawSquare();

这个其实很类似工厂模式的方法,不过工厂用来创建对象,这个用来执行行为。

享元

享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式。
简单来说,有则使用,无则新建。

组合

组合(Composite)模式的定义:有时又叫作部分-整体模式,它是一种将对象组合成树状的层次结构的模式,用来表示“部分-整体”的关系,使用户对单个对象和组合对象具有一致的访问性。
典型案例,树结构,二叉树等,每个节点都实现同样接口。

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×